Critical slope p-adic L-functions
نویسندگان
چکیده
Let g be an eigenform of weight k+2 on Γ0(p)∩Γ1(N) with p N . If g is non-critical (i.e. of slope less than k + 1), using the methods of [1, 20], one can attach a p-adic L-function to g which is uniquely determined by its interpolation property together with a bound on its growth. However, in the critical slope case, the corresponding growth bound is too large to uniquely determine the p-adic L-function with its standard interpolation property. In this paper, using the theory of overconvergent modular symbols, we give a natural definition of p-adic L-functions in this critical slope case.
منابع مشابه
Iwasawa theory of overconvergent modular forms, I: Critical-slope p-adic L-functions
We construct an Euler system of p-adic zeta elements over the eigencurve which interpolates Kato’s zeta elements over all classical points. Applying a big regulator map gives rise to a purely algebraic construction of a two-variable p-adic L-function over the eigencurve. As a first application of these ideas, we prove the equality of the p-adic L-functions associated with a critical-slope refin...
متن کاملOVERCONVERGENT MODULAR SYMBOLS AND p-ADIC L-FUNCTIONS
Cet article est exploration constructive des rapports entre les symboles modulaires classique et les symboles modulaires p-adiques surconvergents. Plus précisément, on donne une preuve constructive d’un theorème de controle (Theoreme 1.1) du deuxiéme auteur [20]; ce theoréme preuve l’existence et l’unicité des “liftings propres” des symboles propres modulaires classiques de pente non-critique. ...
متن کاملCRITICAL SLOPE p-ADIC L-FUNCTIONS – DRAFT
Let p be a prime number, and let f = ∑ n anq n denote a normalized cuspidal eigenform of weight k + 2 on Γ0(N) with p N . If f is a p-ordinary form, then by [1, 17] we can attach a p-adic L-function to f which interpolates special values of its L-series. On the other hand, if f is non-ordinary at p, we have two p-adic L-functions attached to f , one for each root of x − apx + p. These two roots...
متن کامل$p$-adic Dual Shearlet Frames
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
متن کاملHigher Rank Case of Dwork
Dedicated to the memory of Bernard Dwork 1. Introduction In this series of two papers, we prove the p-adic meromorphic continuation of the pure slope L-functions arising from the slope decomposition of an overconvergent F-crystal, as conjectured by Dwork 6]. More precisely, we prove a suitable extension of Dwork's conjecture in our more general setting of-modules, see section 2 for precise deen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 87 شماره
صفحات -
تاریخ انتشار 2013